Thursday, August 6, 2015

forward - Convexity Adjustment for Futures


Let Bt be the cash account numeraire. The future and forward prices at time t are expressed as:


Fut=EQt[ST],

Fwd=EQt[ST/BT]EQt[1/BT].


Where dS(t)S(t)=μdt+σdWQs(t),

dr(t)=Kr(t)dt+αdWQr(t),
$$ = \rho dt.$$


Where K is the mean reversion of the short interest rate r.


How is the convexity adjustment calculated in order to express the forward price in terms of the future price?



Answer



We assume that, under the probability measure Q, dSt=St(rtdt+σdWs(t)),drt=krtdt+αdWr(t),

where dWs(t),Wr(t)t=ρdt. From (1), for st, rs=ek(st)rt+αstek(su)dWr(u).
Then, for Tt, Ttrsds=rtk(1ek(Tt))+αTtstek(su)dWr(u)ds=rtk(1ek(Tt))+αTtTuek(su)dsdWr(u)=rtk(1ek(Tt))+αTt1k(1ek(Tu))dWr(u)=rtβ(t,T)+αTtβ(u,T)dWr(u),
where β(t,T)=1k(1ek(Tt)).
Therefore, EQ(1BTFt)=1BtEQ(eTtrsdsFt)=1Btertβ(t,T)+α22Ttβ2(u,T)du.
Moreover, EQ(STFt)=StEQ(eTtrsdsσ22(Tt)+σTtdWs(u))=StEQ(ertβ(t,T)+αTtβ(u,T)dWr(u)σ22(Tt)+σTtdWs(u))=Stertβ(t,T)+α22Ttβ2(u,T)du+ασρTtβ(u,T)du.
Consequently, C(t,T)=FutFwd=EQ(STFt)E(STBTFt)/EQ(1BTFt)=Stertβ(t,T)+α22Ttβ2(u,T)du+ασρTtβ(u,T)duStBtBtertβ(t,T)α22Ttβ2(u,T)du=eα2Ttβ2(u,T)du+ασρTtβ(u,T)du.



Don't forget the 1/2 in normal variable's characteristic function.


No comments:

Post a Comment

technique - How credible is wikipedia?

I understand that this question relates more to wikipedia than it does writing but... If I was going to use wikipedia for a source for a res...