Let Bt be the cash account numeraire. The future and forward prices at time t are expressed as:
Fut=EQt[ST],
Fwd=EQt[ST/BT]EQt[1/BT].
Where dS(t)S(t)=μdt+σdWQs(t),
dr(t)=−Kr(t)dt+αdWQr(t),
$$
Where K is the mean reversion of the short interest rate r.
How is the convexity adjustment calculated in order to express the forward price in terms of the future price?
Answer
We assume that, under the probability measure Q, dSt=St(rtdt+σdWs(t)),drt=−krtdt+αdWr(t),
where d⟨Ws(t),Wr(t)⟩t=ρdt. From (1), for s≥t, rs=e−k(s−t)rt+α∫ste−k(s−u)dWr(u).
Then, for T≥t, ∫Ttrsds=rtk(1−e−k(T−t))+α∫Tt∫ste−k(s−u)dWr(u)ds=rtk(1−e−k(T−t))+α∫Tt∫Tue−k(s−u)dsdWr(u)=rtk(1−e−k(T−t))+α∫Tt1k(1−e−k(T−u))dWr(u)=rtβ(t,T)+α∫Ttβ(u,T)dWr(u),
where β(t,T)=1k(1−e−k(T−t)).
Therefore, EQ(1BT∣Ft)=1BtEQ(e−∫Ttrsds∣Ft)=1Bte−rtβ(t,T)+α22∫Ttβ2(u,T)du.
Moreover, EQ(ST∣Ft)=StEQ(e∫Ttrsds−σ22(T−t)+σ∫TtdWs(u))=StEQ(ertβ(t,T)+α∫Ttβ(u,T)dWr(u)−σ22(T−t)+σ∫TtdWs(u))=Stertβ(t,T)+α22∫Ttβ2(u,T)du+ασρ∫Ttβ(u,T)du.
Consequently, C(t,T)=FutFwd=EQ(ST∣Ft)E(STBT∣Ft)/EQ(1BT∣Ft)=Stertβ(t,T)+α22∫Ttβ2(u,T)du+ασρ∫Ttβ(u,T)duStBtBtertβ(t,T)−α22∫Ttβ2(u,T)du=eα2∫Ttβ2(u,T)du+ασρ∫Ttβ(u,T)du.
Don't forget the 1/2 in normal variable's characteristic function.
No comments:
Post a Comment