We have the following single-factor HJM model dtf(t,T)=σ(t,T)dWt+α(t,T)dt
f(t,T)=f(0,T)+∫t0σ(s,T)dWs+∫t0α(s,T)ds
The discounted T bond is then Z(t,T)=exp−(∫T0f(0,u)du+∫t0∫Tsσ(s,u)dudWs+∫t0∫Tsα(s,u)duds)=exp(−∫T0f(0,u)du+∫t0−∫Tsσ(s,u)du⏟Σ(s,T)dWs−∫t0∫Tsα(s,u)duds)
By Ito's Lemma dtZ(t,T)=Z(t,T)((12Σ2(t,T)−∫Ttα(t,u)du)dt+Σ(t,T)dWt)
My question is, how was Ito's Lemma applied to the term ∫t0∫Tsσ(s,u)dudWs, which contains an integral of Brownian motion?
Claus Munk's Fixed Income Modelling proves the following stochastic Leibniz rule on page 57-58 Yt=∫Ttf(0,u)du+∫Tt∫t0α(s,u)dsdu+∫Tt∫t0σ(s,u)dWsdu
dYt=(∫Ttα(t,u)du−f(t,t))dt+(∫Ttσ(t,u)du)dWt
however due to the different limits in the integrals, I am unable to extrapolate from Munk's example to solve my question.
Any help is appreciated.
No comments:
Post a Comment