I have some questions when dealing with Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR).
Is there any relationship between VaRα(X) and VaRα(−X), or CVaRα(X) and CVaRα(−X) ?
Here, VaR and CVaR are defined as:
VaRα(X):=inf{x∈R|Pr(X>x)≤α},α∈[0,1]
CVaRα(X):=1α∫α0VaRs(X)ds
Answer
We consider the case where the distribution function F of X is strictly increasing. Then VaRα(X)=inf{x:P(X>x)≤α}=inf{x:F(x)≥1−α}=F−1(1−α).
Moreover, we note that the distribution function G of −X is defined by G(x)=P(−X≤x)=1−F(−x),
Then, VaRα(−X)=G−1(1−α)=−F−1(α)=−VaR1−α(X).
Furthermore, CVaRα(−X)=1α∫α0VaRs(−X)ds=−1α∫α0VaR1−s(X)ds=−1α∫11−αVaRs(X)ds=−1α(∫10VaRs(X)ds−∫1−α0VaRs(X)ds)=−1α∫10F−1(1−s)ds+1−ααCVaR1−α(X)=−1α∫10F−1(s)ds+1−ααCVaR1−α(X)=−1α∫∞−∞xdF(x)+1−ααCVaR1−α(X)=−1αE(X)+1−ααCVaR1−α(X).
No comments:
Post a Comment