I have a formula for intermediate european option price calculated at, say, m-th possible tree value.
S(m)n is a price at node after going up n times and down n−m times V(S(m)n,t+nΔt)=e−rΔt[pV(uS(m)n,t+(n+1)Δt+(1−p)V(uS(m)n,t+(n+1)Δt]
p=e(r−D)Δt−du−d - risk-neutral probability, r - risk free rate, D continuous dividend yield
u=eσ√Δt, d=e−σ√Δt, σ is volatility of stock price
I need to figure out using taylor approximations that under limit for Δt−>0 this formula becomes BS PDE.
Ok so first of all, I used the identity ex=1+x and applied it everywhere possible. Then I wrote taylor expansion for both functions of the RHS but at this point my results did not really match.
Any value beyond and equal to O(Δt2) I made equal to zero.
So, for instance, for the term 12d2VdS2 I ended with the following:
... + 12d2VdS2S2(p(u−1)2+(1−p)(d−1)2)∗e−rΔt
Unfortunatelly after substituting all the variables after rewriting them with taylor approximation, the resulting expression after all the cancellations did not turn into the 12d2VdS2S2σ2
I wrote taylor expansion centered around (S(m)n,t+Δt), respectively.
Could someone let me know where I made the mistake? I did not bother continuing with other parts of the formula mainly due to getting the first one wrong ...
Answer
Assuming continuously compounded returns for a multi-period model with N being the number of periods:
{loguwith probability qlogdwith probability 1-q given the stock price at maturity log(STS0)=ilogu+(N−i)logd=ilog(ud)+Nlogd where i is a binomial r.v. under the risk-neutral measure Q. lim with \begin{align} \mu T=&\mathbb{E}[i]\log(u/d) +N\log d \\ \sigma^2T=&\text{Var}[i][\log(u/d)]^2 \end{align} By CLT, the distribution of the sum of continuously compounded returns converges to a normal distribution. Since, by assumption u=1/d, we have the equations: u=e^{\sqrt{\Delta t}}, \quad d=e^{-\sqrt{\Delta T}}, \quad q=\frac{1}{2}+\frac{\mu}{2\sigma}\Delta t, \quad \Delta t=\frac{t}{N} Let us re-write the binomial distribution: \text{Bin}\left(\left\lfloor\frac{\log(K/S_0d^N)}{\log(u/d)}\right\rfloor+1,N,q\right) \begin{align} 1-\text{Bin}\left(\left\lfloor\frac{\log(K/S_0d^N)}{\log(u/d)}\right\rfloor+1,N,q\right) &=\mathbb{Q}\left(i\leq \left\lfloor\frac{\log(K/S_0d^N)}{\log(u/d)}\right\rfloor+1-1\right) \\ &=\mathbb{Q}\bigg(\underbrace{\bigg(\frac{i-Nq}{\sqrt{Nq(1-q)}}\bigg)}_{=\frac{\log(S_T/S_0)-N\log d-Nq\log(u/d)}{\log(u/d)\sqrt{Nq(1-q)}}}\leq\underbrace{\frac{\left\lfloor\frac{\log(K/S_0d^N)}{\log(u/d)}\right\rfloor-Nq}{\sqrt{Nq(1-q)}}}_{=:\mathcal{A}}\bigg) \end{align} \left\lfloor\frac{\log(K/S_0d^N)}{\log(u/d)}\right\rfloor=\frac{\log(K/S_0d^N)}{\log(u/d)}-\varepsilon, \qquad \varepsilon\in[0,1) \\ \Rightarrow\mathcal{A}=\frac{\log(K/S_0)+N(\log d+q\log(u/d))-\varepsilon\log(u/d)}{\log(u/d)q(1-q)\sqrt N}
Now, substitute \hat\mu=q(\log d+\log(u/d)),\quad \hat\sigma=q(1-q)(\log(u/d))^2,\quad q=\frac{e^{r\Delta t}-e^{-\sigma\sqrt{\Delta t}}}{e^{\sigma\sqrt{\Delta t}}-e^{-\sigma\sqrt{\Delta t}}} \\ \text{in } f(\Delta t)=\frac{\log(K/S_0)-\hat\mu N-\varepsilon\log(u/d)}{\hat\sigma\sqrt N} and compute its Taylor expansion: f(\Delta t)=\frac{\log(K/S_0)}{\sigma\sqrt{N\Delta t}}-\frac{2\varepsilon\sigma}{\sqrt N \sigma}+\frac{1}{2}\frac{\sigma^2N\Delta t-rN\Delta t}{\sigma N\Delta t}+O((\Delta t)^3) As h\rightarrow 0, N\rightarrow \infty and N\Delta t=T, f(\Delta t)\rightarrow \frac{\log(K/S_0)-\left(r-\frac{1}{2}\sigma^2\right)T}{\sigma\sqrt{T}} \\ \Rightarrow \text{Bin}\left(\left\lfloor\frac{\log(K/S_0d^N)}{\log(u/d)}\right\rfloor+1,N,q\right)\rightarrow \mathbf\Phi\left(\frac{\log(K/S_0)-\left(r-\frac{1}{2}\sigma^2\right)T}{\sigma\sqrt{T}}\right) As a result, we have the convergence towards the Black-Scholes model: \text{Call}_0=S_0\mathbf\Phi(d_1)-Ke^{-rT}\mathbf\Phi(d_2)
To derive the PDE, note in the Binomial model it holds e^{r\Delta t}\text{Call}(S,t)=q\text{Call}_u(S_u,t+\Delta t)+(1-q)\text{Call}_d(S_d,t+\Delta t)\tag1
Plug in the value of q=\frac{e^{r\Delta t}-e^{-\sigma\sqrt{\Delta t}}}{e^{\sigma\sqrt{\Delta t}}-e^{-\sigma\sqrt{\Delta t}}}:
e^{r\Delta t}\text{Call}(S,t)=\frac{e^{r\Delta t}-e^{-\sigma\sqrt{\Delta t}}}{e^{\sigma\sqrt{\Delta t}}-e^{-\sigma\sqrt{\Delta t}}}\text{Call}(Se^{\sigma\sqrt{\Delta t}},t+\Delta t)+\frac{e^{\sigma\sqrt{\Delta t}}-e^{r\Delta t}}{e^{\sigma\sqrt{\Delta t}}-e^{-\sigma\sqrt{\Delta t}}}\text{Call}(Se^{-\sigma\sqrt{\Delta t}},t+\Delta t)
Expand \text{Call}(Se^{\sigma\sqrt{\Delta t}},t+\Delta t) about (S,t):
\text{Call}(Se^{\sigma\sqrt{\Delta t}},t+\Delta t)=\text{Call}(S,t)+(e^{\sigma\Delta t}-1)\frac{\partial\text{Call}}{\partial S}+\frac{1}{2}(e^{\sigma\Delta t}-1)^2S^2\frac{\partial^2\text{Call}}{\partial S^2}+\Delta t\left(\frac{\partial\text{Call}}{\partial t}+(e^{\sigma\Delta t}-1)S\frac{\partial^2\text{Call}}{\partial S\partial t}+\frac{1}{2}(e^{\sigma\Delta t}-1)^2S^2\frac{\partial^3\text{Call}}{\partial S^2\partial t}\right)+O((S)^3) Then, perform the same expansion for \text{Call}(Se^{-\sigma\sqrt{\Delta t}},t+\Delta t) about (S,t), and re-write eq. (1)
e^{r\Delta t}\text{Call}(S,t)=\frac{e^{r\Delta t}-e^{-\sigma\sqrt{\Delta t}}}{e^{\sigma\sqrt{\Delta t}}-e^{-\sigma\sqrt{\Delta t}}}\text{Call}(Se^{\sigma\sqrt{\Delta t}},t+\Delta t)-\frac{e^{\sigma\sqrt{\Delta t}}-e^{r\Delta t}}{e^{\sigma\sqrt{\Delta t}}-e^{-\sigma\sqrt{\Delta t}}}\text{Call}(Se^{-\sigma\sqrt{\Delta t}},t+\Delta t)\tag2
Expand eq. (2) in \Delta t to get
0=\left(r\text{Call}(S,t)+\frac{\partial\text{Call}}{\partial t}+rS\frac{\partial\text{Call}}{\partial S}+\frac{1}{2}rS^2\frac{\partial^2\text{Call}}{\partial S^2}\right)\Delta t+O((\Delta t)^{3/2})
As \Delta t\rightarrow 0 we have the Black-Scholes PDE.
No comments:
Post a Comment