Saturday, July 1, 2017

fx - Pricing and Hedging an Option through a Currency Triangle


How is the option price of an plain vanilla option (in a Black Scholes setting) derived, which is written on, say XAGGBP but practically hedged with XAGUSD and GBPUSD (because these are more liquid)? Eventually, I am interested in the delta(s) and correlation risk with respect to XAGUSD and GBPUSD.



Answer



Let Xxaggbpt be the exchange rate from one unit of XAG to units of GBP. Moreover, let Xxagusdt, and Xgbpusdt be the respective exchanges rates from one unit of XAG and GBP to units of USD. We consider an option payoff, in GBP, at maturity T of the form (XxaggbpTK)+. Note that (XxaggbpTK)+=(XxagusdTXgbpusdTK)+. We assume that, under the USD risk-neutral probability measure Qusd, dXxagusdt=Xxagusdt[(rusdrxag)dt+σ1dW1t],dXgbpusdt=Xgbpusdt[(rusdrgbp)dt+σ2(ρdW1t+1ρ2dW2t)], where rusd, rgbp, and rxag are interest rates, σ1 and σ2 are volatilities, ρ is the correlation, and {W1t,t0} and {W2t,t0} are two standard independent Brownian motions.


Let Busdt=erusdt and Bgbpt=ergbpt be the respective USD and GBP money market account values at time t. Moreover, let Qgbp be the GBP risk-neutral probability measure. Note that dQgbpdQusd|t=BgbptXgbpUSDtBusdtXgbpUSD0=e12σ22t+σ2(ρW1t+1ρ2W2t). Then, {˜W1t,t0} and \{\tilde{W}_t^2, \, t\ge 0\}, where \begin{align*} \tilde{W}_t^1 &= W_t^1 - \sigma_2\rho t, \\ \tilde{W}_t^2 &= W_t^2 - \sigma_2\sqrt{1-\rho^2} t, \end{align*} are two standard independent Brownian motions under Q_{gbp}. Furthermore, under Q^{gbp}, \begin{align*} dX_t^{xag\rightarrow usd} &= X_t^{xag\rightarrow usd}\left[\left(r^{usd}-r^{xag} +\rho\sigma_1\sigma_2\right)dt +\sigma_1 d\tilde{W}_t^1 \right],\\ dX_t^{gbp\rightarrow usd} &= X_t^{gbp\rightarrow usd}\left[\left(r^{usd}-r^{gbp} +\sigma_2^2\right)dt +\sigma_2\left(\rho d\tilde{W}_t^1 +\sqrt{1-\rho^2}d\tilde{W}_t^2\right)\right]. \end{align*} Then \begin{align*} X_t^{xag\rightarrow gbp} &= \frac{X_t^{xag\rightarrow usd}}{X_t^{gbp\rightarrow usd}} \\ &=\frac{X_0^{xag\rightarrow usd}}{X_0^{gbp\rightarrow usd}} e^{\left(r^{gbp}-r^{xag}+\rho\sigma_1\sigma_2-\frac{1}{2}\sigma_1^2 -\frac{1}{2}\sigma_2^2\right)t + (\sigma_1-\rho\sigma_2)\tilde{W}_t^1 -\sigma_2\sqrt{1-\rho^2}\tilde{W}_t^2}\\ &=X_0^{xag\rightarrow gbp} e^{\left(r^{gbp}-r^{xag}-\frac{\sigma_1^2+\sigma_2^2-2\rho\sigma_1\sigma_2}{2}\right)t + \sqrt{\sigma_1^2+\sigma_2^2 - 2\rho\sigma_1\sigma_2 }\frac{(\sigma_1-\rho\sigma_2)\tilde{W}_t^1 -\sigma_2\sqrt{1-\rho^2}\tilde{W}_t^2}{\sqrt{\sigma_1^2+\sigma_2^2 - 2\rho\sigma_1\sigma_2 }} }. \end{align*}


Let \begin{align*} \sigma = \sqrt{\sigma_1^2+\sigma_2^2 - 2\rho\sigma_1\sigma_2 }, \end{align*} and \begin{align*} W_t^3 = \frac{(\sigma_1-\rho\sigma_2)\tilde{W}_t^1 -\sigma_2\sqrt{1-\rho^2}\tilde{W}_t^2}{\sqrt{\sigma_1^2+\sigma_2^2 - 2\rho\sigma_1\sigma_2 }}. \end{align*} Then \{W_t^3, \, t \ge 0\} is a standard Brownian motion under Q^{gbp}, by Levy's characterization. Moreover, \begin{align*} d X_t^{xag\rightarrow gbp} = X_t^{xag\rightarrow gbp}\left[\left(r^{gbp}-r^{xag} \right)dt +\sigma dW_t^3 \right]. \end{align*} Therefore, the option payoff (1) can be valued using the Garman Kohlhagen formula, while replace the initial exchange rate X_0^{xag\rightarrow gbp} by \frac{X_0^{xag\rightarrow usd}}{X_0^{gbp\rightarrow usd}}. The respective hedge ratios can be computed subsequently.


No comments:

Post a Comment

technique - How credible is wikipedia?

I understand that this question relates more to wikipedia than it does writing but... If I was going to use wikipedia for a source for a res...