I have the Black-Scholes equation for European option with maturity T and strike K
{∂u∂t=ru−12σ2x2∂2u∂x2−rx∂u∂x,x∈R,t>0u(T,x)=max{x−K,0},x∈R.
How can I use the Feynman-Kac formula to solve this equation?
I would like to show that the solution u is given by
u(t,x)=xN(d1)−Ke−r(T−t)N(d2).
where
d1=ln(xK)+(r+σ22)(T−t)σ√T−t
d2=d1−σ√T−t,
N(x) is the distribution of the standard normal distribution function.
Answer
By application of Feynman-Kac theorem U has the representation U(t,Xt)=e−r(T−t)Et[max{XT−K,0}]
where Xt satisfy the SDE dXt=μXtdt+σXtdWPt
Now, we define a new measure Q by dQ=LTdP
on FT where dLt=(μ−rσ)LtdWPt.
By application of Girsanov theorem, we have dWPt=−(μ−rσ)dt+dWQt
(1) and (2) dXt=rXtdt+σXtdWQt.
By application of Ito's lemma lnXT=lnXt+(r−12σ2)(T−t)+σ(WT−Wt)
Indeed we showed lnXT∼N(lnXt+(r−12σ2)(T−t),σ2(T−t))
therefore $$Q(X_T
\frac{d\mathbb{Q}^X}{d\mathbb{Q}}=\frac{B_T/B_t}{X_T/X_t}where
B_t=\exp\left(\int_{0}^{t}r\,du\right)=e^{rt}asaresult
{{\mathbb{Q}}^{X}}({{X}_{T}}>K)=\int\limits_{K}^{+\infty }{d{{\mathbb{Q}}^{X}}}=\frac{{{e}^{-r(T-t)}}}{{{X}_{t}}}\int\limits_{K}^{+\infty }{{{X}_{T}}\,d\mathbb{Q}}=\frac{{{e}^{-r(T-t)}}}{{{X}_{t}}}\int\limits_{K}^{+\infty }{{{X}_{T}}{{f}_{{{X}_{T}}}}(x)dx} wehave
\mathbb{Q}^X(X_T>K)=\frac{e^{-r(T-t)}}{X_t}E^\mathbb{Q}[X_T|X_T>K]=N\left(\frac{\ln \left(\frac{X_t}{K}\right)+\left( r+\frac{1}{2}\sigma ^{2} \right)(T-t)}{\sigma^2\sqrt{T-t}}\right)Indeed
\mathbb{Q}^X(X_T>K)=N(d_1)\tag 6ontheotherhand
U(t,x)=e^{-r(T-t)}\mathbb{E}_{t}^{\mathbb{Q}}\left[\,\max\{X_T-K\},0\,\right]\tag 7itisobvious
\max\{X_T-K,0\}=(X_T-K)\mathbb{1}_{\{X_T>K\}}then
U(t,X_t)=e^{-r(T-t)}\mathbb{E}_{t}^{\mathbb{Q}}\left[X_T\mathbb{1}_{\{X_T>K\}}\right]-e^{-r(T-t)}\mathbb{E}_{t}^{\mathbb{Q}}\left[K\mathbb{1}_{\{X_T>K\}}\right]asaresult
U(t,X_t)=X_t\,\mathbb{E}_{t}^{\mathbb{Q}}\left[\frac{X_T/X_t}{B_T/B_t}\mathbb{1}_{\{X_T>K\}}\right]-Ke^{-r(T-t)}\mathbb{E}_{t}^{\mathbb{Q}}\left[\mathbb{1}_{\{X_T>K\}}\right]inotherwords
U(t,X_t)=X_t\mathbb{E}_{t}^{\mathbb{Q}^X}\left[\mathbb{1}_{\{X_T>K\}}\right]-Ke^{-r(T-t)}\mathbb{E}_{t}^{\mathbb{Q}}\left[\mathbb{1}_{\{X_T>K\}}\right]so
U(t,X_t)=X_t\mathbb{Q}^X(X_T>K)-Ke^{-r(T-t)}\mathbb{Q}(X_T>K)\tag 8$(5)$,$(6)$and$(8)$
U(t,X_t)=X_tN(d_1)-Ke^{-r(T-t)}N(d_2)$$
No comments:
Post a Comment