I have the Black-Scholes equation for European option with maturity T and strike K
{∂u∂t=ru−12σ2x2∂2u∂x2−rx∂u∂x,x∈R,t>0u(T,x)=max
How can I use the Feynman-Kac formula to solve this equation?
I would like to show that the solution u is given by
u(t,x)=xN(d_1) - Ke^{-r(T-t)}N(d_2).
where
d_1=\frac{\ln(\frac{x}{K})+(r+ \frac{\sigma^2}{2})(T-t)}{\sigma \sqrt{T-t}} d_2=d_1-\sigma \sqrt{T-t},
N(x) is the distribution of the standard normal distribution function.
By application of Feynman-Kac theorem U has the representation U(t,X_t)=e^{-r(T-t)}\mathbb{E}_{t}\left[\,\max\{X_T-K,0\}\,\right] where X_t satisfy the SDE dX_t=\mu X_tdt+\sigma X_t dW_{t}^{\mathbb{P}}\tag 1 Now, we define a new measure \mathbb{Q} by d\mathbb{Q}=L_T\,d\mathbb{P}\quad on \mathcal{F}_T where dL_t=\left(\frac{\mu-r}{\sigma}\right)L_t dW^{\mathbb{P}}_t. By application of Girsanov theorem, we have dW^{\mathbb{P}}_t=-\left(\frac{\mu-r}{\sigma} \right)dt+dW^{\mathbb{Q}}_t\tag 2 (1) and (2) dX_t=r X_tdt+\sigma X_t dW_{t}^{\mathbb{Q}}.\tag 3 By application of Ito's lemma \ln X_T=\ln X_t+\left( r-\frac{1}{2}\sigma ^{2} \right)(T-t)+\sigma (W_T-W_t) Indeed we showed \ln X_T\sim N\left(\ln X_t+\left( r-\frac{1}{2}\sigma ^{2} \right)(T-t)\,,\, \sigma^2(T-t)\right)\tag 4 therefore $$Q(X_TK)=N\left(\frac{\ln \left(\frac{X_t}{K}\right)+\left( r-\frac{1}{2}\sigma ^{2} \right)(T-t)}{\sigma^2\sqrt{T-t}}\right)=N(d_2)\tag 5 Now we should change the measure $\mathbb{Q}$ to another measure $\mathbb{Q}^X$. Consider the Radon-Nikodym derivative \frac{d\mathbb{Q}^X}{d\mathbb{Q}}=\frac{B_T/B_t}{X_T/X_t} where B_t=\exp\left(\int_{0}^{t}r\,du\right)=e^{rt} as a result {{\mathbb{Q}}^{X}}({{X}_{T}}>K)=\int\limits_{K}^{+\infty }{d{{\mathbb{Q}}^{X}}}=\frac{{{e}^{-r(T-t)}}}{{{X}_{t}}}\int\limits_{K}^{+\infty }{{{X}_{T}}\,d\mathbb{Q}}=\frac{{{e}^{-r(T-t)}}}{{{X}_{t}}}\int\limits_{K}^{+\infty }{{{X}_{T}}{{f}_{{{X}_{T}}}}(x)dx} we have \mathbb{Q}^X(X_T>K)=\frac{e^{-r(T-t)}}{X_t}E^\mathbb{Q}[X_T|X_T>K]=N\left(\frac{\ln \left(\frac{X_t}{K}\right)+\left( r+\frac{1}{2}\sigma ^{2} \right)(T-t)}{\sigma^2\sqrt{T-t}}\right) Indeed \mathbb{Q}^X(X_T>K)=N(d_1)\tag 6 on the other hand U(t,x)=e^{-r(T-t)}\mathbb{E}_{t}^{\mathbb{Q}}\left[\,\max\{X_T-K\},0\,\right]\tag 7 it is obvious \max\{X_T-K,0\}=(X_T-K)\mathbb{1}_{\{X_T>K\}} then U(t,X_t)=e^{-r(T-t)}\mathbb{E}_{t}^{\mathbb{Q}}\left[X_T\mathbb{1}_{\{X_T>K\}}\right]-e^{-r(T-t)}\mathbb{E}_{t}^{\mathbb{Q}}\left[K\mathbb{1}_{\{X_T>K\}}\right] as a result U(t,X_t)=X_t\,\mathbb{E}_{t}^{\mathbb{Q}}\left[\frac{X_T/X_t}{B_T/B_t}\mathbb{1}_{\{X_T>K\}}\right]-Ke^{-r(T-t)}\mathbb{E}_{t}^{\mathbb{Q}}\left[\mathbb{1}_{\{X_T>K\}}\right] in other words U(t,X_t)=X_t\mathbb{E}_{t}^{\mathbb{Q}^X}\left[\mathbb{1}_{\{X_T>K\}}\right]-Ke^{-r(T-t)}\mathbb{E}_{t}^{\mathbb{Q}}\left[\mathbb{1}_{\{X_T>K\}}\right] so U(t,X_t)=X_t\mathbb{Q}^X(X_T>K)-Ke^{-r(T-t)}\mathbb{Q}(X_T>K)\tag 8 $(5)$ ,$(6)$ and $(8)$ U(t,X_t)=X_tN(d_1)-Ke^{-r(T-t)}N(d_2)$$
No comments:
Post a Comment