Friday, March 23, 2018

Put-Call relationship for Option on Forward


The forward price of a forward contract maturing at time T on an asset with price St at time t is,


F=Ste(rq)(Tt)


where r is the risk free rate and q is the continuous dividend rate for St.


The Black Scholes equation for an option contingent on F is, Vt+12σ2F22VF2rV=0


How do i show that the prices of European call, C, and put options, P, on the forward F, with the same strike K and expiry date T1, where T1<T (ie, the options expire before the forward matures), are related by


C(F,t)=FKP(K2F,t)


Thanks!




Answer



Let {F(t,T),0tT} be the forward process that satisfies an SDE of the form dF(t,T)=σF(t,T)dWt, where σ is the constant volatility, {Wt,t>0} is a standard Brownian motion. The payoff at time T1, where 0<T1T, of a vanilla European forward option is of the form max where \psi = 1, for a call option, and -1, for a put option. Note that, for any 0\leq t \leq T_1, \begin{align*} F(T_1, T) = F(t, T) \exp\Big(-\frac{\sigma^2}{2} (T_1 -t) + \sigma \sqrt{T_1 -t} \xi \Big), \end{align*} where \xi is a standard normal random variable. Then the value at time t of the option payoff above is given by \begin{align*} d(t, T_1)\psi\Big[F(t, T) \Phi\big(\psi d_1(F)\big) -K \Phi\big(\psi d_2(F)\big) \Big], \end{align*} where d(t, T_1) is the discount factor, \begin{align*} d_1 (F) = \frac{\ln \frac{F(t, T)}{K} + \frac{\sigma^2}{2} (T_1 -t)}{\sqrt{T_1-t}\,\sigma}, \end{align*} and \begin{align*} d_2 (F) = \frac{\ln \frac{F(t, T)}{K} - \frac{\sigma^2}{2} (T_1 -t)}{\sqrt{T_1-t}\,\sigma}. \end{align*} That is, \begin{align*} C(F, t) = d(t, T_1)\Big[F(t, T) \Phi\big(d_1(F)\big) -K \Phi\big(d_2(F)\big) \Big], \end{align*} and \begin{align*} P(F, t) = d(t, T_1)\Big[K \Phi\big(-d_2(F)\big) -F(t, T) \Phi\big(-d_1(F)\big)\Big], \end{align*} Note that, by replacing F in d_1 with K^2/F(t, T), \begin{align*} d_1 \Big(\frac{K^2}{F}\Big) &= \frac{\ln \frac{K^2/F(t, T)}{K} +\frac{\sigma^2}{2} (T_1 -t)}{\sqrt{T_1-t}\,\sigma}\\ &= \frac{-\ln \frac{F(t, T)}{K} + \frac{\sigma^2}{2} (T_1 -t)}{\sqrt{T_1-t}\,\sigma}\\ &= -d_2(F). \end{align*} Similarly, \begin{align*} d_2 \Big(\frac{K^2}{F}\Big) &= \frac{\ln \frac{K^2/F(t, T)}{K} -\frac{\sigma^2}{2} (T_1 -t)}{\sqrt{T_1-t}\,\sigma}\\ &= \frac{-\ln \frac{F(t, T)}{K} - \frac{\sigma^2}{2} (T_1 -t)}{\sqrt{T_1-t}\,\sigma}\\ &= -d_1(F). \end{align*} Then \begin{align*} \frac{F}{K}P\bigg(\frac{K^2}{F}, t \bigg) &= d(t, T_1)\frac{F}{K}\Bigg[K \Phi\bigg(-d_2\bigg(\frac{K^2}{F}\bigg)\bigg) -\frac{K^2}{F} \Phi\bigg(-d_1\bigg(\frac{K^2}{F}\bigg)\bigg)\Bigg]\\ &= d(t, T_1)\bigg[F \Phi\Bigg(-d_2\bigg(\frac{K^2}{F}\bigg)\bigg) -K \Phi\bigg(-d_1\bigg(\frac{K^2}{F}\bigg)\bigg)\Bigg]\\ &= d(t, T_1)\Big[F(t, T) \Phi\big(d_1(F)\big) -K \Phi\big(d_2(F)\big) \Big]\\ &= C(F, t). \end{align*}


No comments:

Post a Comment

technique - How credible is wikipedia?

I understand that this question relates more to wikipedia than it does writing but... If I was going to use wikipedia for a source for a res...