Tuesday, July 30, 2019

black scholes - Expectation of $frac {S_{T_2}} {S_{T_1}}$ at $T_0$


Is my below computation correct (assuming flat volatlity Black Scholes model, flat interest rate curve):


$\mathbb{E}(\frac {S_{T_2}} {S_{T_1}}| \mathcal{F}_{T_0})$


$ = \mathbb{E}{\frac{S_{T_0}e^{(r-\frac{\sigma^2}{2})T_2+\sigma W_{T_2}}}{S_{T_0}e^{(r-\frac{\sigma^2}{2})T_1+\sigma W_{T_1}}}}$


$=\mathbb{E}(e^{r(T_2-T_1)-\frac{1}{2}\sigma^2(T_2-T_1)+\sigma(W_{T_2}-W_{T_1})})$


$=e^{r(T_2-T_1)-\frac{1}{2}\sigma^2(T_2-T_1)+\frac{1}{2}\sigma^2(T_2-T_1)}$


$ = e^{r(T_2-T_1)}$






EDIT: Can anyone please re-confirm one of the steps above? $\mathbb{E}(e^{r(T_2-T_1)-\frac{1}{2}\sigma^2(T_2-T_1)+\sigma(W_{T_2}-W_{T_1})})$ $=e^{Mean(.) + \frac{1}{2}Variance(.)}$ $Mean(.) = r(T_2-T_1)-\frac{1}{2}\sigma^2(T_2-T_1)$ $Variance(.) = \mathbb{E}[\{\sigma(W_{T_2}-W_{T_1})\}^2]=\mathbb{E}[\sigma^2\{(W_{T_2})^2 +(W_{T_1})^2 -2W_{T_1}W_{T_2}\}]=\sigma^2(T_2+T_1-2T_1) = \sigma^2(T_2-T_1)$



I think I got it all correct, now! :-)




Related Question - Do we have an analytical formula (under standard Black Scholes) for -


$\mathbb{E}((\frac {S_{T_2}} {S_{T_1}}-K)^+| \mathcal{F}_{T_0})$ paid at $T_2$


My attempt .. basically using the Black Scholes pricing formula for call option -


$\mathbb{E}((\frac {S_{T_2}} {S_{T_1}}-K)^+| \mathcal{F}_{T_0}) = e^{r(T_2-T_1)}N(d_1)-KN(d2)$



where $d_1= \frac{\ln(\frac{e^{r(T_2-T_1})}{K})+\frac {\sigma^2(T_2-T_1)}{2})}{\sigma \sqrt(T_2-T_1)}$


$d_2= \frac{\ln(\frac{e^{r(T_2-T_1})}{K})-\frac {\sigma^2(T_2-T_1)}{2})}{\sigma \sqrt(T_2-T_1)}$


I would multiple with the discounting factor $e^{-r (T_2-T_0)}$ to the above formula to get the price at $T_0$.




No comments:

Post a Comment

technique - How credible is wikipedia?

I understand that this question relates more to wikipedia than it does writing but... If I was going to use wikipedia for a source for a res...