Assuming my underline asset price follows the process:
dln(Ft,T)=−(1/2)σ2e−2λ(T−t)dt+σe−λ(T−t)dBt
How should I derive an option price formula?
Answer
For 0<T0≤T, consider the option with payoff, at the option maturity T0, of the form max(FT0,T−K,0).
Note that FT0,T=F0,Texp(−σ22∫T00e−2λ(T−t)dt+σ∫T00e−λ(T−t)dBt).
Let ˆσ2=σ2T0∫T00e−2λ(T−t)dt=e−2λTσ22λT0(e2λT0−1).
Then, in distribution, FT0,T=F0,Texp(−ˆσ22T0+ˆσ√T0Z),
where Z is a standard normal random variable. The value of Payoff (1) is now given by e−rT0[F0,TΦ(d1)−KΦ(d2)],
where d1=lnF0,TK+ˆσ22T0ˆσ√T0,d2=d1−ˆσ√T0,
and Φ is the cumulative distribution function of a standard normal random variable.
No comments:
Post a Comment