From Baxter and Rennie, page 138: f(t,T)=σWt+f(0,T)+∫t0α(s,T)ds
Zt=exp−(σ(T−t)Wt+σ∫t0Wsds+∫T0f(0,u)du+∫t0∫Tsα(s,u)ds)
dZt=Zt(−σ(T−t)dWt−(∫Ttα(t,u)du)dt+12σ2(T−t)2dt)
How would Ito's Lemma be applied here?
I have tried: Zt=exp−(σ(T−t)Wt+σ∫t0Wsds+∫T0f(0,u)du+∫t0∫Tsα(s,u)ds)=e−Xt
Xt=σ(T−t)Wt+σ∫t0Wsds+∫T0f(0,u)du+∫t0∫Tsα(s,u)ds
dXt=σ(T−t)Wt−σWtdt+σ(Wtdt−W0d0)+f(0,T)dT−f(0,0)d0+(∫Ttα(t,u)du)dt−(∫Ttα(0,u)du)d0=σ(T−t)Wt+f(0,T)dT+(∫Ttα(t,u)du)dt
dZt=−ZtdXt+12Zt(dXt)2=Zt(−σ(T−t)Wt−f(0,T)dT−(∫Ttα(t,u)du)dt+12σ2(T−t)2dt)
A few concerns are that I've written d0 and that I have f(0,T)dT remaining. I do think that I've applied Ito's Lemma correctly, the issue is with dXt.
Any help is appreciated.
Answer
Let Zt=exp(−Xt)
with Xt=σ(T−t)Wt+σ∫t0Wsds+∫T0f(0,u)du+∫t0∫Tsα(s,u)duds
and Wt a standard Brownian motion, along with the usual assumptions.
We can write Xt=f(t,Wt) and apply Itô's lemma to get: dXt=∂f∂t(t,Wt)dt+∂f∂Wt(t,Wt)dWt+12∂2f∂W2t(t,Wt)d⟨W,W⟩t
∂f∂t(t,Wt)=−σWt+σWt+∫Ttα(t,u)du∂f∂Wt(t,Wt)=σ(T−t)∂2f∂W2t(t,Wt)=0
where we have used Leibniz integral rule (see here) to express the time derivatives of integral terms, notably the following: ∂t∫t0∫Tsα(s,u)du⏟˜α(s,T)ds=∂t∫t0˜α(s,T)ds=∫t0∂t˜α(s,T)⏟=0ds+∂t(t)⏟=1˜α(t,T)−∂t(0)⏟0˜α(0,T)=˜α(t,T)=∫Ttα(s,u)du
Wrapping up, yields the following differential for the process Xt dXt=(∫Ttα(t,u)du)dt+σ(T−t)dWt
from which one can deduce d⟨X,X⟩t=σ2(T−t)2dt
and finally, applying Itô's lemma to the continuous semi martingale Zt=˜f(t,Xt)=exp(−Xt) dZt=−ZtdXt+12Ztd⟨X,X⟩t=Zt((12σ2(T−t)2−∫Ttα(t,u)du)dt−σ(T−t)dWt)
No comments:
Post a Comment