Wednesday, January 9, 2019

stochastic calculus - Baxter & Rennie HJM: differentiating Ito integral



From Baxter and Rennie, page 138: f(t,T)=σWt+f(0,T)+t0α(s,T)ds

Zt=exp(σ(Tt)Wt+σt0Wsds+T0f(0,u)du+t0Tsα(s,u)ds)
dZt=Zt(σ(Tt)dWt(Ttα(t,u)du)dt+12σ2(Tt)2dt)


How would Ito's Lemma be applied here?


I have tried: Zt=exp(σ(Tt)Wt+σt0Wsds+T0f(0,u)du+t0Tsα(s,u)ds)=eXt

Xt=σ(Tt)Wt+σt0Wsds+T0f(0,u)du+t0Tsα(s,u)ds
dXt=σ(Tt)WtσWtdt+σ(WtdtW0d0)+f(0,T)dTf(0,0)d0+(Ttα(t,u)du)dt(Ttα(0,u)du)d0=σ(Tt)Wt+f(0,T)dT+(Ttα(t,u)du)dt
dZt=ZtdXt+12Zt(dXt)2=Zt(σ(Tt)Wtf(0,T)dT(Ttα(t,u)du)dt+12σ2(Tt)2dt)


A few concerns are that I've written d0 and that I have f(0,T)dT remaining. I do think that I've applied Ito's Lemma correctly, the issue is with dXt.


Any help is appreciated.



Answer



Let Zt=exp(Xt)

with Xt=σ(Tt)Wt+σt0Wsds+T0f(0,u)du+t0Tsα(s,u)duds
and Wt a standard Brownian motion, along with the usual assumptions.


We can write Xt=f(t,Wt) and apply Itô's lemma to get: dXt=ft(t,Wt)dt+fWt(t,Wt)dWt+122fW2t(t,Wt)dW,Wt

ft(t,Wt)=σWt+σWt+Ttα(t,u)dufWt(t,Wt)=σ(Tt)2fW2t(t,Wt)=0
where we have used Leibniz integral rule (see here) to express the time derivatives of integral terms, notably the following: tt0Tsα(s,u)du˜α(s,T)ds=tt0˜α(s,T)ds=t0t˜α(s,T)=0ds+t(t)=1˜α(t,T)t(0)0˜α(0,T)=˜α(t,T)=Ttα(s,u)du
Wrapping up, yields the following differential for the process Xt dXt=(Ttα(t,u)du)dt+σ(Tt)dWt
from which one can deduce dX,Xt=σ2(Tt)2dt
and finally, applying Itô's lemma to the continuous semi martingale Zt=˜f(t,Xt)=exp(Xt) dZt=ZtdXt+12ZtdX,Xt=Zt((12σ2(Tt)2Ttα(t,u)du)dtσ(Tt)dWt)


No comments:

Post a Comment

technique - How credible is wikipedia?

I understand that this question relates more to wikipedia than it does writing but... If I was going to use wikipedia for a source for a res...